
2026/01/26 13:33 1/5 Git

Memos - https://memos.clapas.org/

Git

Ressources

Documentation en français
GIT Howto
19 astuces GIT
Comment écrire de bon message de commit
Doc Markdown GitLab
Comment nommer ses branches

Ignorer tout le contenu d'un dossier

Créer un fichier .gitignore dans le dossier. Il devra contenir :

Ignore everything in this directory
*
Except this file
!.gitignore

Configurer Git globalement

Le fichier ~/.gitconfig contient les paramétrages de tous les projets Git de l'utilisateur sur
l'ordinateur. Pour le modifier :

git config –global user.name “Prénom NOM” : Stocker son nom
git config –global user.email “moi@mon-domaine.org” : Stocker son email
git config –global credential.helper cache : Mettre en cache le login et mot de passe
git config –global credential.helper 'cache –timeout=86400' : Stocker le login et mot de
passe pour 24h
git config –global color.ui true : activer la couleur.

Le fichier .gitconfig

Le fichier .gitconfig est présent dans son dossier /home/moi :

[user]
 name = Prénom NOM
 email = moi@mon-domain.org
[credential]
 helper = cache --timeout=86400
[color]
 ui = true
[push]
 default = simple

http://www.alexgirard.com/git-book/
http://githowto.com
http://www.alexkras.com/19-git-tips-for-everyday-use
http://chris.beams.io/posts/git-commit/
http://doc.gitlab.com/ce/markdown/markdown.html
https://memos.clapas.org/informatique/aides/aidegitbranches

Last update: 2019/12/18 20:00 informatique:aides:git https://memos.clapas.org/informatique/aides/git?rev=1576699216

https://memos.clapas.org/ Printed on 2026/01/26 13:33

[alias]
 co = checkout
 ci = commit
 st = status
 br = branch
 lg = log --color --graph --pretty=format:'%Cred%h%Creset -
%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)<%an>%Creset' --abbrev-
commit --
 type = cat-file -t
 dump = cat-file -p

Allias pour .bashrc

alias gs='git status '
alias ga='git add '
alias gb='git branch '
alias gc='git commit'
alias gd='git diff'
alias go='git checkout '
alias gk='gitk --all&'
alias gx='gitx --all'

Envoyer un dépôt Git dans Github

Créer un dépôt nommé “origin” pointant vers le dépôt GitHub : git remote add origin
https://github.com/<mon-compte>/<mon-projet>.git
Récupérer la branche distante pour synchroniser localement : git pull origin master
Envoyer la branche master local vers le dépôt origin : git push origin master

Initialiser un nouveau dépôt

Créer un dossier : mkdir mon-projet
Aller dans le dossier du projet : cd mon-projet
Initialiser le dépôt git du projet : git init

Récupérer en local un dépôt github distant

git clone https://github.com/<mon-compte>/<mon-projet>.git

Commandes de base : Workflow normal

git clone git:<depot> : récupérer en local un dépôt distant. Créer un dossier avec le nom
présent avant le .git final git pull : mettre à jour le dépôt local avec les modifications
distantes git status : savoir ou on en est git diff –cached : vérifier ce qui va être validé. git
add fichier1 fichier2 … : ajouter des fichiers nouveaux ou nouvellement modifiés aux

https://github.com/
https://github.com/

2026/01/26 13:33 3/5 Git

Memos - https://memos.clapas.org/

changements à prendre en compte git commit -m “Commit message” : valider les
changements à prendre en compte git commit -a -m “Commit message” : ajouter et
valider directement tous les fichiers (sauf les nouveaux) git log : lister les commits
effectués git diff <commit1> <commit2> : voir les différences entre deux commits git rm
<nom_fichier> : supprimer un fichier de l'ordinateur et du dépôt git. git mv <nom_fichier>
<nouvelle_destination> : déplacer un fichier sur l'ordinateur et du dépôt git. git push
origin master : envoyer dans la branche “origin” (= le dépôt distant) les modfs de la
branche “master” locale“. ==== Usage basique des branches et des merges ==== git
branch <nom-branche> : créer une nouvelle branche ”<nom-branche>“ git branch : voir
toutes les branches existantes (* = branche actuellement utilisée) git checkout <nom-
branche> : changer de branche. Ici bascule sur la branche ”<nom-branche>“ git merge
<nom-branche> : fusionner les changements de la branche ”<nom-branche>“ sur la
branche courante (ici “master”) git diff : repérer les fichiers en conflit suite au merge.
Éditer les fichiers, corriger puis utiliser la commande : *git commit -a* gitk : visualiser
graphiquement les branches git branch -d <nom-branche> : supprimer la branche ”<nom-
branche>“ une fois fusionné avec la branche courante (sinon erreur) git branch -D <nom-
branche> : supprimer SANS VÉRIFICATION de fusion la branche ”<nom-branche>“ git
remote show origin : voir les branches distantes git push origin <nom-branche> : pousser
la branche locale vers le dépôt distant. git push origin –delete <nom-branche> : supprimer
la branche dans le dépôt. ==== Sauvegarde de modifications pour les “transporter”
==== Voir : http://sametmax.com/soyez-relax-faites-vous-un-petit-git-stash/ git stash : en
se plaçant dans le dossier principal du projet git stash apply : pour réappliquer les
modifications présentes dans le stash ==== Gestion des tags ==== git tag -l : lister les
tags git tag <nom-du-tag> <id-du-commit> : permet de créer un tag léger <nom-du-tag>
sur le commit possédant la clé <id-du-commit>. git push origin <nom-du-tag> : pousser
un tag sur le serveur distant. Il ne sera pas pousser avec la commande git push par
défaut. git checkout <nom-du-tag> : basculer sur le tag <nom-du-tag>. git tag -d <nom-
du-tag> : supprimer le tag <nom-du-tag> localement. git push origin :refs/tags/<nom-du-
tag> : supprimer le tag <nom-du-tag> distant après l'avoir supprimé localement. ====
Corrections, annulations… ==== git commit –amend : permet de modifier le commentaire
du dernier commit dans un éditeur. git commit –amend -m “New commit message” :
modifier le message du dernier commit (sans passer par l'éditeur) git checkout . : annule
les modifications en cours depuis le dernier commit git reset HEAD^ : annule le dernier
commit non propagé et restaure les fichiers. Ceci remplace la copie de travail telle qu'elle
était avant le commit. git reset –soft HEAD^ : annule le dernier commit non propagé, et
conserver les modifications. –soft permet de conserver les modifications git reset –soft
HEAD~2 : annule les 2 derniers commit non propagé et conserve les modifications.
HEAD~2 correspond a 2éme parents de HEAD git rm –cached <fichier> : permet de
supprimer le fichier <fichier> distant sans le supprimer localement. git rm –cached -r
<dossier>/ : permet de supprimer le dossier <dossier> distant sans le supprimer
localement. ==== Commandes d'annulation DANGEREUSE ==== git reset –hard HEAD :
annuler les changements effectués depuis le dernier commit. Supprime les fichiers non
validés DEFINITIVEMENTS ! git reset –hard HEAD^ : supprimer le dernier commit. Cette
action peut être répétée autant de fois que vous le désirez. Supprime les fichiers non
validés DEFINITIVEMENTS ! git revert <commit> : restaurer le dépôt tel qu'il l'était lors du
commit spécifié. Pour fonctionner, toutes les modifications doivent être validées (ou
annulées avec *git reset*) ==== Récupération des changements d'un collègue ==== git
remote add <mon-collegue> git:github.com/<mon-collegue> : créer un alias qui fait pointer
<mon-collegue> vers l'adresse du dépôt. Permet d'éviter d'avoir à taper l'adresse complète à chaque
fois. git fetch <mon-collegue> : récupérer les changements que <mon-collegue> a effectués. git
merge <mon-collegue>/master : fusionne les modifications de <mon-collegue> avec la branche

http://sametmax.com/soyez-relax-faites-vous-un-petit-git-stash/

Last update: 2019/12/18 20:00 informatique:aides:git https://memos.clapas.org/informatique/aides/git?rev=1576699216

https://memos.clapas.org/ Printed on 2026/01/26 13:33

master locale. git pull <mon-collegue> : réaliser en une seule commande fetch puis merge.

Analyser l'historique — Git log

git log : git log v2.5.. : commits depuis (non-visible depuis) v2.5 git log test..master : commits
visibles depuis master mais pas test git log master..test : commits visibles depuis test mais pas
master git log master…test : commits visibles pour test ou master, mais pas pour les 2 git log
–since=“2 weeks ago” : commits des 2 dernières semaines git log Makefile : commits modifiant
le Makefile git log fs/ : commits qui modifient les fichiers sous fs/ git log -S'foo()' : commits qui
ajoutent ou effacent des données contenant la chaîne 'foo()' git log –no-merges : ne pas montrer les
commits de merge

Comparer les commits — Git diff

git diff master..test : afficher la différence entre le sommet de deux branches git diff
master…test : afficher la différence entre l'ancêtre commun de deux branches git diff : afficher les
changements dans le répertoire de travail qui ne sont pas encore assemblés pour le prochain commit.
git diff –cached : montrer la différence entre l’index et votre dernier commit. Ce que vous
committerez si vous lancez « git commit » sans l’option « -a ». git diff HEAD : afficher les
changements de votre répertoire de travail depuis votre dernier commit. Ces changements seront
committés si vous lancez git commit -a. git diff experimental : montrer la différence entre votre
répertoire de travail actuel et la capture de la branche « experimental ». git diff HEAD – ./lib :
montrer les différences entre votre répertoire de travail actuel et le dernier commit (ou plus
précisément, le sommet de la branche actuelle), en limitant la comparaison aux fichiers dans le
répertoire lib. git diff –stat : ajouter l’option –stat, qui limitera la sortie aux noms de fichier qui ont
changés, accompagné d’un petit graphe décrivant le nombre de lignes différentes dans chaque
fichier.

Sous-modules

git submodule add git:github.com/demouser/myproject.git <mon-dossier> : ajouter un
dossier mon_dossier liée au dépôt git git:github.com/demo-user/demo.git. Pour clôner un
projet contenant des sous-modules : * git clone git:github.com/demouser/myproject.git :
clône le dépôt. * git submodule init : initialise votre fichier local de configuration. * git
submodule update : tire toutes les données de ce projet et récupére le commit approprié
tel que listé dans le super-projet. ==== Notes sur les branches ==== La branche master
est la branche par défaut git branch –track <nom-branche> origin/<nom-branche>** : pour
récupérer automatiquement les modifs de la branche <nom-branche> sur le dépôt distant
origin/<nom-branche>. ==== Note sur le message du « commit » ==== Bien que ce ne
soit pas obligatoire, il est assez efficace de commencer le message du « commit » avec
une courte ligne (moins de 50 caractères) qui résume le changement, suivi d’une ligne
blanche, puis d’une description plus complète. Les outils qui transforment les commits en
mail, par exemple, utilisent la première ligne du commit pour le sujet du mail et le reste
pour le contenu. ==== Comment fermer automatiquement des bugs via un message de
commit sur Github==== Utiliser la syntaxe : Fix #35 Voir :
https://help.github.com/articles/closing-issues-via-commit-messages ==== Comment
supprimer un label d'issue d'un dépôt ? ==== Utiliser Curl avec l'API de Github : curl -i

https://help.github.com/articles/closing-issues-via-commit-messages

2026/01/26 13:33 5/5 Git

Memos - https://memos.clapas.org/

-u ”<mon-email>“ -X DELETE https://api.github.com/repos/<mon-login>/<mon-
projet>/labels/<mon-label>

From:
https://memos.clapas.org/ - Memos

Permanent link:
https://memos.clapas.org/informatique/aides/git?rev=1576699216

Last update: 2019/12/18 20:00

https://api.github.com/repos/
https://memos.clapas.org/
https://memos.clapas.org/informatique/aides/git?rev=1576699216

	Git
	Ressources
	Ignorer tout le contenu d'un dossier
	Configurer Git globalement
	Le fichier .gitconfig
	Allias pour .bashrc
	Envoyer un dépôt Git dans Github
	Initialiser un nouveau dépôt
	Récupérer en local un dépôt github distant
	Commandes de base : Workflow normal
	Analyser l'historique — Git log
	Comparer les commits — Git diff
	Sous-modules

