2026/01/26 15:25 1/5

Git

Git
Ressources

¢ Documentation en francais

e GIT Howto

19 astuces GIT

Comment écrire de bon message de commit
Doc Markdown GitLab

Comment nommer ses branches

Ignorer tout le contenu d'un dossier

Créer un fichier .gitignore dans le dossier. Il devra contenir :

Ignore everything in this directory
3

Except this file

l.gitignore

Configurer Git globalement

Le fichier ~/.gitconfig contient les paramétrages de tous les projets Git de I'utilisateur sur
I'ordinateur. Pour le modifier :

« git config -global user.name “Prénom NOM” : Stocker son nom

* git config -global user.email “moi@mon-domaine.org” : Stocker son email

« git config -global credential.helper cache : Mettre en cache le login et mot de passe

* git config -global credential.helper ‘cache -timeout=86400" : Stocker le login et mot de
passe pour 24h

e git config -global color.ui true : activer la couleur.

Le fichier .gitconfig

Le fichier .gitconfig est présent dans son dossier /home/moi :

[user]

name = Prénom NOM

email = moi@mon-domain.org
[credential]

helper = cache --timeout=86400
[color]

ui = true
[push]

default = simple

Memos - https://memos.clapas.org/

http://www.alexgirard.com/git-book/
http://githowto.com
http://www.alexkras.com/19-git-tips-for-everyday-use
http://chris.beams.io/posts/git-commit/
http://doc.gitlab.com/ce/markdown/markdown.html
https://memos.clapas.org/informatique/aides/aidegitbranches

Last update: 2019/12/18 20:02 informatique:aides:git https://memos.clapas.org/informatique/aides/git?rev=1576699355

[alias]
co = checkout
ci = commit
st = status
br = branch
1lg = log --color --graph --pretty=format:'%Cred%sh%sCreset -

%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)<%an>%Creset' --abbrev-
commit --

type = cat-file -t

dump = cat-file -p

Allias pour .bashrc

alias gs='git status '
alias ga='git add '
alias gb='git branch '
alias gc='git commit'
alias gd='git diff'
alias go='git checkout
alias gk='gitk --all&'
alias gx='gitx --all’

Envoyer un dépoét Git dans Github

e Créer un dép6t nommé “origin” pointant vers le dépét GitHub : git remote add origin
https://github.com/<mon-compte>/<mon-projet>.git

e Récupérer la branche distante pour synchroniser localement : git pull origin master

» Envoyer la branche master local vers le dépo6t origin : git push origin master

Initialiser un nouveau dépot

e Créer un dossier : mkdir mon-projet
e Aller dans le dossier du projet : cd mon-projet
* Initialiser le dépot git du projet: git init

Récupérer en local un dépot github distant
git clone https://github.com/<mon-compte>/<mon-projet>.git
Commandes de base : Workflow normal

git clone git://<depot> : récupérer en local un dépo6t distant. Créer un dossier avec le nom présent
avant le .qgit final

git pull : mettre a jour le dép6t local avec les modifications distantes

https://memaos.clapas.org/ Printed on 2026/01/26 15:25

https://github.com/

2026/01/26 15:25 3/5 Git

git status : savoir ou on en est
git diff -cached : vérifier ce qui va étre validé.

git add fichierl fichier2 ... : ajouter des fichiers nouveaux ou nouvellement modifiés aux
changements a prendre en compte

git commit -m “Commit message” : valider les changements a prendre en compte

git commit -a -m “Commit message” : ajouter et valider directement tous les fichiers (sauf les
nouveaux)

git log : lister les commits effectués
git diff <commitl> <commit2> : voir les différences entre deux commits
git rm <nom_fichier> : supprimer un fichier de I'ordinateur et du dépét git.

git mv <nom_fichier> <nouvelle_destination> : déplacer un fichier sur I'ordinateur et du dépdt
git.

git push origin master : envoyer dans la branche “origin” (= le dép06t distant) les modfs de la
branche “master” locale“.

Usage basique des branches et des merges

git branch <nom-branche> : créer une nouvelle branche "<nom-branche>*
git branch : voir toutes les branches existantes (* = branche actuellement utilisée)
git checkout <nom-branche> : changer de branche. Ici bascule sur la branche "<nom-branche>"

git merge <nom-branche> : fusionner les changements de la branche "<nom-branche>" sur la
branche courante (ici “master”)

git diff : repérer les fichiers en conflit suite au merge. Editer les fichiers, corriger puis utiliser la
commande : *git commit -a*

gitk : visualiser graphiquement les branches

git branch -d <nom-branche> : supprimer la branche "<nom-branche>" une fois fusionné avec la
branche courante (sinon erreur)

git branch -D <nom-branche> : supprimer SANS VERIFICATION de fusion la branche ”"<nom-
branche>*

git remote show origin : voir les branches distantes
git push origin <nom-branche> : pousser la branche locale vers le dép6t distant.

git push origin -delete <nom-branche> : supprimer la branche dans le dép6ot.

Memos - https://memos.clapas.org/

Last update: 2019/12/18 20:02 informatique:aides:git https://memos.clapas.org/informatique/aides/git?rev=1576699355

Sauvegarde de modifications pour les "transporter"

Voir : http://sametmax.com/soyez-relax-faites-vous-un-petit-git-stash/ git stash : en se placant dans
le dossier principal du projet git stash apply : pour réappliquer les modifications présentes dans le
stash

Gestion des tags

git tag -l : lister les tags git tag <nom-du-tag> <id-du-commit> : permet de créer un tag léger
<nom-du-tag> sur le commit possédant la clé <id-du-commit>. git push origin <nom-du-tag> :
pousser un tag sur le serveur distant. Il ne sera pas pousser avec la commande git push par défaut.
git checkout <nom-du-tag> : basculer sur le tag <nom-du-tag>. git tag -d <nom-du-tag> :
supprimer le tag <nom-du-tag> localement. git push origin :refs/tags/<nom-du-tag> : supprimer
le tag <nom-du-tag> distant apres I'avoir supprimé localement.

Corrections, annulations...

git commit -amend : permet de modifier le commentaire du dernier commit dans un éditeur. git
commit -amend -m “New commit message” : modifier le message du dernier commit (sans
passer par I'éditeur) git checkout . : annule les modifications en cours depuis le dernier commit git
reset HEAD” : annule le dernier commit non propagé et restaure les fichiers. Ceci remplace la copie
de travail telle qu'elle était avant le commit. git reset -soft HEAD” : annule le dernier commit non
propagé, et conserver les modifications. -soft permet de conserver les modifications git reset -soft
HEAD~2 : annule les 2 derniers commit non propagé et conserve les modifications. HEAD~2
correspond a 2éme parents de HEAD git rm -cached <fichier> : permet de supprimer le fichier
<fichier> distant sans le supprimer localement. git rm -cached -r <dossier>/ : permet de
supprimer le dossier <dossier> distant sans le supprimer localement.

Commandes d'annulation DANGEREUSE

git reset -hard HEAD : annuler les changements effectués depuis le dernier commit. Supprime les
fichiers non validés DEFINITIVEMENTS ! git reset -hard HEAD " : supprimer le dernier commit. Cette
action peut étre répétée autant de fois que vous le désirez. Supprime les fichiers non validés
DEFINITIVEMENTS ! git revert <commit> : restaurer le dépo6t tel qu'il I'était lors du commit spécifié.
Pour fonctionner, toutes les modifications doivent étre validées (ou annulées avec *git reset*)

Récupération des changements d'un collegue

git remote add <mon-collegue> git:github.com/<mon-collegue> : créer un alias qui fait
pointer <mon-collegue> vers I'adresse du dépoét. Permet d'éviter d'avoir a taper I'adresse
compléte a chaque fois. git fetch <mon-collegue> : récupérer les changements que <mon-
collegue> a effectués. git merge <mon-collegue>/master : fusionne les modifications de
<mon-collegue> avec la branche master locale. git pull <mon-collegue> : réaliser en une
seule commande fetch puis merge. ==== Analyser I'historique — Git log ==== git log : git
log v2.5.. : commits depuis (non-visible depuis) v2.5 git log test..master : commits visibles

https://memaos.clapas.org/ Printed on 2026/01/26 15:25

http://sametmax.com/soyez-relax-faites-vous-un-petit-git-stash/

2026/01/26 15:25 5/5 Git

depuis master mais pas test git log master..test : commits visibles depuis test mais pas
master git log master...test : commits visibles pour test ou master, mais pas pour les 2 git
log -since=“2 weeks ago” : commits des 2 derniéres semaines git log Makefile : commits
modifiant le Makefile git log fs/ : commits qui modifient les fichiers sous fs/ git log -S'foo()'
: commits qui ajoutent ou effacent des données contenant la chaine 'foo()' git log -no-
merges : ne pas montrer les commits de merge ==== Comparer les commits — Git diff
==== git diff master..test : afficher la différence entre le sommet de deux branches git
diff master...test : afficher la différence entre I'ancétre commun de deux branches git diff :
afficher les changements dans le répertoire de travail qui ne sont pas encore assemblés
pour le prochain commit. git diff -cached : montrer la différence entre I'index et votre
dernier commit. Ce que vous committerez si vous lancez « git commit » sans I'option « -a
», git diff HEAD : afficher les changements de votre répertoire de travail depuis votre
dernier commit. Ces changements seront committés si vous lancez git commit -a. git diff
experimental : montrer la différence entre votre répertoire de travail actuel et la capture
de la branche « experimental ». git diff HEAD - ./lib : montrer les différences entre votre
répertoire de travail actuel et le dernier commit (ou plus précisément, le sommet de la
branche actuelle), en limitant la comparaison aux fichiers dans le répertoire lib. git diff
-stat : ajouter I'option -stat, qui limitera la sortie aux noms de fichier qui ont changés,
accompagné d’un petit graphe décrivant le nombre de lignes différentes dans chaque
fichier. ==== Sous-modules ==== git submodule add
git:github.com/demouser/myproject.git <mon-dossier> : ajouter un dossier mon_dossier liée
au dépot git git:github.com/demo-user/demo.git. Pour cléner un projet contenant des sous-modules : *
git clone git:github.com/demouser/myproject.git : cléone le dépét. * git submodule init :
initialise votre fichier local de configuration. * git submodule update : tire toutes les
données de ce projet et récupére le commit approprié tel que listé dans le super-projet.
==== Notes sur les branches ==== La branche master est la branche par défaut git
branch -track <nom-branche> origin/<nom-branche>** : pour récupérer automatiquement
les modifs de la branche <nom-branche> sur le dépot distant origin/<nom-branche>.
==== Note sur le message du « commit » ==== Bien que ce ne soit pas obligatoire, il est
assez efficace de commencer le message du « commit » avec une courte ligne (moins de
50 caracteres) qui résume le changement, suivi d’une ligne blanche, puis d’une
description plus compléte. Les outils qui transforment les commits en mail, par exemple,
utilisent la premiére ligne du commit pour le sujet du mail et le reste pour le contenu.
==== Comment fermer automatiquement des bugs via un message de commit sur

Github==== Utiliser la syntaxe : Fix #35 Voir :
https://help.github.com/articles/closing-issues-via-commit-messages ==== Comment
supprimer un label d'issue d'un dépét ? ==== Utiliser Curl avec I'API de Github : curl -i

-u ”<mon-email>*“ -X DELETE https://api.github.com/repos/<mon-login>/<mon-
projet>/labels/<mon-label>

From:
https://memos.clapas.org/ - Memos

Permanent link:
https://memos.clapas.org/informatique/aides/git?rev=1576699355

Last update: 2019/12/18 20:02

Memos - https://memos.clapas.org/

https://help.github.com/articles/closing-issues-via-commit-messages
https://api.github.com/repos/
https://memos.clapas.org/
https://memos.clapas.org/informatique/aides/git?rev=1576699355

	Git
	Ressources
	Ignorer tout le contenu d'un dossier
	Configurer Git globalement
	Le fichier .gitconfig
	Allias pour .bashrc
	Envoyer un dépôt Git dans Github
	Initialiser un nouveau dépôt
	Récupérer en local un dépôt github distant
	Commandes de base : Workflow normal
	Usage basique des branches et des merges
	Sauvegarde de modifications pour les "transporter"
	Gestion des tags
	Corrections, annulations...
	Commandes d'annulation DANGEREUSE
	Récupération des changements d'un collègue

