2026/01/26 13:34 1/7

Git

Git
Ressources

¢ Documentation en francais

e GIT Howto

19 astuces GIT

Comment écrire de bon message de commit
Doc Markdown GitLab

Comment nommer ses branches

Ignorer tout le contenu d'un dossier

Créer un fichier .gitignore dans le dossier. Il devra contenir :

Ignore everything in this directory
3

Except this file

l.gitignore

Configurer Git globalement

Le fichier ~/.gitconfig contient les paramétrages de tous les projets Git de I'utilisateur sur
I'ordinateur. Pour le modifier :

« git config -global user.name “Prénom NOM” : Stocker son nom

* git config -global user.email “moi@mon-domaine.org” : Stocker son email

« git config -global credential.helper cache : Mettre en cache le login et mot de passe

* git config -global credential.helper ‘cache -timeout=86400" : Stocker le login et mot de
passe pour 24h

e git config -global color.ui true : activer la couleur.

Le fichier .gitconfig

Le fichier .gitconfig est présent dans son dossier /home/moi :

[user]

name = Prénom NOM

email = moi@mon-domain.org
[credential]

helper = cache --timeout=86400
[color]

ui = true
[push]

default = simple

Memos - https://memos.clapas.org/

http://www.alexgirard.com/git-book/
http://githowto.com
http://www.alexkras.com/19-git-tips-for-everyday-use
http://chris.beams.io/posts/git-commit/
http://doc.gitlab.com/ce/markdown/markdown.html
https://memos.clapas.org/informatique/aides/aidegitbranches

Last update: 2019/12/18 20:06 informatique:aides:git https://memos.clapas.org/informatique/aides/git?rev=1576699572

[alias]
co = checkout
ci = commit
st = status
br = branch
1lg = log --color --graph --pretty=format:'%Cred%sh%sCreset -

%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)<%an>%Creset' --abbrev-
commit --

type = cat-file -t

dump = cat-file -p

Allias pour .bashrc

alias gs='git status '
alias ga='git add '
alias gb='git branch '
alias gc='git commit'
alias gd='git diff'
alias go='git checkout
alias gk='gitk --all&'
alias gx='gitx --all’

Envoyer un dépoét Git dans Github

e Créer un dép6t nommé “origin” pointant vers le dépét GitHub : git remote add origin
https://github.com/<mon-compte>/<mon-projet>.git

e Récupérer la branche distante pour synchroniser localement : git pull origin master

» Envoyer la branche master local vers le dépo6t origin : git push origin master

Initialiser un nouveau dépot

e Créer un dossier : mkdir mon-projet
e Aller dans le dossier du projet : cd mon-projet
* Initialiser le dépot git du projet: git init

Récupérer en local un dépot github distant
git clone https://github.com/<mon-compte>/<mon-projet>.git
Commandes de base : Workflow normal

git clone git://<depot> : récupérer en local un dépo6t distant. Créer un dossier avec le nom présent
avant le .qgit final

git pull : mettre a jour le dép6t local avec les modifications distantes

https://memaos.clapas.org/ Printed on 2026/01/26 13:34

2026/01/26 13:34 3/7 Git

git status : savoir ou on en est
git diff -cached : vérifier ce qui va étre validé.

git add fichierl fichier2 ... : ajouter des fichiers nouveaux ou nouvellement modifiés aux
changements a prendre en compte

git commit -m “Commit message” : valider les changements a prendre en compte

git commit -a -m “Commit message” : ajouter et valider directement tous les fichiers (sauf les
nouveaux)

git log : lister les commits effectués
git diff <commitl> <commit2> : voir les différences entre deux commits
git rm <nom_fichier> : supprimer un fichier de I'ordinateur et du dépét git.

git mv <nom_fichier> <nouvelle_destination> : déplacer un fichier sur I'ordinateur et du dépdt
git.

git push origin master : envoyer dans la branche “origin” (= le dép06t distant) les modfs de la
branche “master” locale“.

Usage basique des branches et des merges

git branch <nom-branche> : créer une nouvelle branche "<nom-branche>*
git branch : voir toutes les branches existantes (* = branche actuellement utilisée)
git checkout <nom-branche> : changer de branche. Ici bascule sur la branche "<nom-branche>"

git merge <nom-branche> : fusionner les changements de la branche "<nom-branche>" sur la
branche courante (ici “master”)

git diff : repérer les fichiers en conflit suite au merge. Editer les fichiers, corriger puis utiliser la
commande : *git commit -a*

gitk : visualiser graphiquement les branches

git branch -d <nom-branche> : supprimer la branche "<nom-branche>" une fois fusionné avec la
branche courante (sinon erreur)

git branch -D <nom-branche> : supprimer SANS VERIFICATION de fusion la branche ”"<nom-
branche>*

git remote show origin : voir les branches distantes
git push origin <nom-branche> : pousser la branche locale vers le dép6t distant.

git push origin -delete <nom-branche> : supprimer la branche dans le dép6ot.

Memos - https://memos.clapas.org/

Last update: 2019/12/18 20:06 informatique:aides:git https://memos.clapas.org/informatique/aides/git?rev=1576699572

Sauvegarde de modifications pour les "transporter"

Voir : http://sametmax.com/soyez-relax-faites-vous-un-petit-git-stash/
git stash : en se placant dans le dossier principal du projet

git stash apply : pour réappliquer les modifications présentes dans le stash

Gestion des tags

git tag -l : lister les tags

git tag <nom-du-tag> <id-du-commit> : permet de créer un tag léger <nom-du-tag> sur le
commit possédant la clé <id-du-commit>.

git push origin <nom-du-tag> : pousser un tag sur le serveur distant. Il ne sera pas pousser avec
la commande git push par défaut.

git checkout <nom-du-tag> : basculer sur le tag <nom-du-tag>.
git tag -d <nom-du-tag> : supprimer le tag <nom-du-tag> localement.
git push origin :refs/tags/<nom-du-tag> : supprimer le tag <nom-du-tag> distant apres I'avoir

supprimé localement.

Corrections, annulations...

git commit -amend : permet de modifier le commentaire du dernier commit dans un éditeur.

git commit -amend -m “New commit message” : modifier le message du dernier commit (sans
passer par I'éditeur)

git checkout . : annule les modifications en cours depuis le dernier commit

git reset HEAD" : annule le dernier commit non propagé et restaure les fichiers. Ceci remplace la
copie de travail telle qu'elle était avant le commit.

git reset -soft HEAD " : annule le dernier commit non propagé, et conserver les modifications. -soft
permet de conserver les modifications

git reset -soft HEAD~2 : annule les 2 derniers commit non propagé et conserve les modifications.
HEAD~2 correspond a 2éme parents de HEAD

git rm -cached <fichier> : permet de supprimer le fichier <fichier> distant sans le supprimer
localement.

git rm -cached -r <dossier>/ : permet de supprimer le dossier <dossier> distant sans le supprimer
localement.

https://memaos.clapas.org/ Printed on 2026/01/26 13:34

http://sametmax.com/soyez-relax-faites-vous-un-petit-git-stash/

2026/01/26 13:34 5/7 Git

Commandes d'annulation DANGEREUSE

git reset -hard HEAD : annuler les changements effectués depuis le dernier commit. Supprime les
fichiers non validés DEFINITIVEMENTS !

git reset -hard HEAD” : supprimer le dernier commit. Cette action peut étre répétée autant de fois
que vous le désirez. Supprime les fichiers non validés DEFINITIVEMENTS !

git revert <commit> : restaurer le dépdt tel qu'il I'était lors du commit spécifié. Pour fonctionner,
toutes les modifications doivent étre validées (ou annulées avec *git reset*)

Récupération des changements d'un collegue

git remote add <mon-collegue> git://github.com/<mon-collegue> : créer un alias qui fait
pointer <mon-collegue> vers |'adresse du dépot. Permet d'éviter d'avoir a taper I'adresse complete a
chaque fois.

git fetch <mon-collegue> : récupérer les changements que <mon-collegue> a effectués.

git merge <mon-collegue>/master : fusionne les modifications de <mon-collegue> avec la
branche master locale.

git pull <mon-collegue> : réaliser en une seule commande fetch puis merge.

Analyser I'historique — Git log

git log :

git log v2.5.. : commits depuis (non-visible depuis) v2.5

git log test..master : commits visibles depuis master mais pas test

git log master..test : commits visibles depuis test mais pas master

git log master...test : commits visibles pour test ou master, mais pas pour les 2

git log -since="2 weeks ago” : commits des 2 dernieres semaines

git log Makefile : commits modifiant le Makefile

git log fs/ : commits qui modifient les fichiers sous fs/

git log -S'foo()' : commits qui ajoutent ou effacent des données contenant la chaine 'foo()'

git log -no-merges : ne pas montrer les commits de merge

Comparer les commits — Git diff

Memos - https://memos.clapas.org/

Last update: 2019/12/18 20:06 informatique:aides:git https://memos.clapas.org/informatique/aides/git?rev=1576699572

git diff master..test : afficher la différence entre le sommet de deux branches
git diff master...test : afficher la différence entre I'ancétre commun de deux branches

git diff : afficher les changements dans le répertoire de travail qui ne sont pas encore assemblés
pour le prochain commit.

git diff -cached : montrer la différence entre I'index et votre dernier commit. Ce que vous
committerez si vous lancez « git commit » sans |'option « -a ».

git diff HEAD : afficher les changements de votre répertoire de travail depuis votre dernier commit.
Ces changements seront committés si vous lancez git commit -a.

git diff experimental : montrer la différence entre votre répertoire de travail actuel et la capture de
la branche « experimental ».

git diff HEAD - ./lib : montrer les différences entre votre répertoire de travail actuel et le dernier
commit (ou plus précisément, le sommet de la branche actuelle), en limitant la comparaison aux
fichiers dans le répertoire lib.

git diff -stat : ajouter I'option -stat, qui limitera la sortie aux noms de fichier qui ont changés,
accompagné d’un petit graphe décrivant le nombre de lignes différentes dans chaque fichier.
Sous-modules
git submodule add git://github.com/demouser/myproject.git <mon-dossier> : ajouter un
dossier mon_dossier liée au dépdt git git://github.com/demo-user/demo.git.
Pour cléner un projet contenant des sous-modules :

« git clone git://github.com/demouser/myproject.git : clone le dépdt.

e git submodule init : initialise votre fichier local de configuration.

 git submodule update : tire toutes les données de ce projet et récupére le commit approprié
tel que listé dans le super-projet.

Notes sur les branches

La branche master est la branche par défaut

git branch -track <nom-branche> origin/<nom-branche> : pour récupérer automatiquement
les modifs de la branche <nom-branche> sur le dépo6t distant origin/<nom-branche>.

Note sur le message du « commit »

Bien que ce ne soit pas obligatoire, il est assez efficace de commencer le message du « commit »
avec une courte ligne (moins de 50 caracteres) qui résume le changement, suivi d’une ligne blanche,
puis d'une description plus complete. Les outils qui transforment les commits en mail, par exemple,
utilisent la premiere ligne du commit pour le sujet du mail et le reste pour le contenu.

https://memaos.clapas.org/ Printed on 2026/01/26 13:34

2026/01/26 13:34 777 Git

Comment fermer automatiquement des bugs via un message de commit sur
Github

Utiliser la syntaxe : Fix #35

Voir : https://help.github.com/articles/closing-issues-via-commit-messages
Comment supprimer un label d'issue d'un dépot ?

Utiliser Curl avec I'API de Github : curl -i -u "<mon-email>" -X DELETE
https://api.github.com/repos/<mon-login>/<mon-projet>/labels/<mon-label>

From:
https://memaos.clapas.org/ - Memos

Permanent link:
https://memos.clapas.org/informatique/aides/git?rev=1576699572

Last update: 2019/12/18 20:06

Memos - https://memos.clapas.org/

https://help.github.com/articles/closing-issues-via-commit-messages
https://memos.clapas.org/
https://memos.clapas.org/informatique/aides/git?rev=1576699572

	Git
	Ressources
	Ignorer tout le contenu d'un dossier
	Configurer Git globalement
	Le fichier .gitconfig
	Allias pour .bashrc
	Envoyer un dépôt Git dans Github
	Initialiser un nouveau dépôt
	Récupérer en local un dépôt github distant
	Commandes de base : Workflow normal
	Usage basique des branches et des merges
	Sauvegarde de modifications pour les "transporter"
	Gestion des tags
	Corrections, annulations...
	Commandes d'annulation DANGEREUSE
	Récupération des changements d'un collègue
	Analyser l'historique — Git log
	Comparer les commits — Git diff
	Sous-modules
	Notes sur les branches
	Note sur le message du « commit »
	Comment fermer automatiquement des bugs via un message de commit sur Github
	Comment supprimer un label d'issue d'un dépôt ?

